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A B S T R A C T

Particulate matter that< 2.5 µm in aerodynamic diameter (PM2.5) has been recognized as one of the principal
pollutants that degrades air quality and increases health burdens. In this study, we employ the MLR and GWR
modelling method to obtain estimation models for PM2.5 with a set of land use/landscape metrics as predictor
variables. The study focused on investigating the influence of urban land use and landscape pattern on PM2.5

spatial variation, specifically, on identification of influential landscape classes/types that regulate PM2.5 con-
centration levels. The spatial PM2.5 concentration in the compact urban scenario of Hong Kong was sampled by
conducting a series of mobile monitoring campaigns. The Local Climate Zone (LCZ) Scheme and World Urban
Database and Portal Tools (WUDAPT) level 0 database were adopted as the basis of the calculation of land use/
landscape metrics. These metrics were then adopted as the predictors to explain the spatial variations in PM2.5.
62% of the variance in PM2.5 can be explained by the resultant GWR model using only five land use/landscape
classes, and without using any traffic-related variables or data from emission inventory. The findings can inform
the urban planning strategies for mitigating air pollution and also indicate the usefulness of LCZ and WUDAPT in
estimating the spatial variation of urban air quality.

1. Introduction

More than half of people globally live in urban area and even will
increase to over two-thirds by 2050 (UN, 2014). Nowadays, un-
precedented rate of urbanization results in air pollution in urban areas
and subsequent health impacts on urban population. Over 90 percent of
the global population are exposing to air pollution that beyond the
recommended level confirmed by WHO recently (UN, 2016). The
amount of death caused by air pollution reached to 650 million in 2012
which accounts for 11.6% of the annual death toll in the world. Hence,
the life risks caused by exposure to air pollution requires global at-
tention (UNEP, 2012). With the rapid urban development in recent
years, environmental issues associated with air pollution have become
an enormous challenge to most of the large cities in Asia (Schwela, Haq,
Huizenga, Han, & Fabian, 2012). As one of the most compact cities in
Asia, Hong Kong is experiencing the challenges from severe air pollu-
tion (Kim Oanh et al., 2006; Schwela et al., 2012). Air quality mon-
itoring data from local authority indicates that Hong Kong still fails to

meet the WHO air quality standards (Brajer, Mead, & Xiao, 2006) de-
spite efforts in the last decade (HKEPD, 2005). Notably, the annual
average PM2.5 concentration is double of the WHO standard. PM2.5 –
particulate matter (PM) that< 2.5 µm in aerodynamic diameter, has
been recognized as one of the principal pollutants that degrades air
quality and is associated with cardiovascular and respiratory mortality
and hospitalizations (Lin et al., 2017; Wong, Tam, Yu, & Wong, 2002).
According to the World Health Statistics (WHO, 2016), approximate
90% of the population living in cities was exposed to PM concentrations
exceeding the WHO air quality guidelines (AQGs) (WHO & UNAIDS,
2006). It heavily influences the liveability of urban areas and the living
quality of urban population.

Urban development significantly changes the natural land cover and
landscape patterns (Landsberg, 1981) and such a highly artificial
landscape and land cover in urbanized areas considerably altered local
climate (Pielke & Avissar, 1990), air quality (Bogucki & Turner, 1987)
and biodiversity (Alkemade et al., 2009). As such, it is important to
optimize land use allocation/landscape planning for an environmental
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and sustainable urban development has been emphasized (de Groot,
Alkemade, Braat, Hein, & Willemen, 2010). It has been observed that
the spatial variation of intraurban air pollution closely relates to land
use planning (Foley et al., 2005; Xian, 2007). Different land use types in
the city have varied effects on the urban air quality. Industrial areas and
heavy traffic usually contribute to a considerably high concentration
level of both particulate matters (PM2.5, PM10) and gaseous pollutants
(CO, NOX) due to the large emission intensity (de Hoogh et al., 2013;
Habermann, Billger, & Haeger-Eugensson, 2015; Ross et al., 2006). In
compact urban areas, zones with high level of air pollution spatially
correlate with commercial and residential land use because the compact
urban form blocks air ventilation and, consequently, impede the dis-
persion of air pollutants (Shi, Lau, & Ng, 2017). Open space is also
influential to pollutant dispersion. Proximity to open urban public
space (e.g. public squares, city parks, playgrounds) contributes to a
better air movement (Ng, 2009) and hence benefits pollutant disper-
sion. Differently, proximity to waterfront area has both benefits and
inconveniences to local air quality. The specific condition might depend
on the climatic characteristics and geographical contexts. Proximity to
waterfronts often provides better ventilation for pollutant dispersion.
However, a strong radiation condition plus the presence of primary air
pollutants react and form troposphere ozone in waterfronts areas
(Simpson, 1994).

A modification in landscape patterns also affects the spatial varia-
tion of air pollution by interfering with critical atmospheric processes
that are decisive to the transport, deposition, and dispersion of the air
pollutants (Pielke et al., 2002; Weaver & Avissar, 2001). For example,
there have been many studies emphasizing the importance of urban
greening and forests to the improvement of urban air quality (Escobedo,
Kroeger, & Wagner, 2011; Nowak, Crane, & Stevens, 2006). Vegetation
has the capacity to separating aerosols and chemicals from the atmo-
sphere. Generally speaking, the concentrations of particulate air pol-
lutants can be significantly reduced due to the influence of vegetation
on the deposition velocity, particularly, when the vegetation is close to
the emission sources (Janhäll, 2015). However, the specific situation

depends on the types of pollutants (e.g. PM2.5 or VOC), the types of
vegetations (e.g. tall tree or low bush), and the geometrical character-
istics of street canyons (Vos, Maiheu, Vankerkom, & Janssen, 2013).

Despite that the land use is one of the most important determinants
of urban air quality, most of the current studies only adopted the areal
composition (the total area of each type of land use in a certain spatial
extent) as the indicator to quantify the land use (Hoek et al., 2008). The
spatial pattern (e.g. the allocation, layout, evenness, fragmentation,
etc.) of different land use types have been rarely considered in the in-
vestigation of the spatial variation of intraurban air quality. This is an
obvious research gap because the spatial variation of intraurban air
quality associates with the land use planning via many different path-
ways (Frank et al., 2006). Facilitated by the rapid development in
geographic information system (GIS) technologies, hundreds of in-
dicators/metrics have been developed to quantify land use allocation
and landscape patterns (Gustafson, 1998), which has been considered
as the prerequisite to the studies in urban ecological research
(McGarigal, 2006). However, there are only a limited amount of studies
that focuses on the relationship between urban land use/landscape
patterns and urban air pollution (Wu, Xie, Li, & Li, 2015). Therefore,
the present study aims to achieve a comprehensive understanding on
the influence of land use and landscape planning on the spatial pattern
of PM2.5 in Hong Kong.

Mobile monitoring, as an efficient method of the spatial investiga-
tion, has been increasingly used in the intraurban air quality research
and pollution exposure studies (Adams & Kanaroglou, 2016; Hagler,
Thoma, & Baldauf, 2010; Isakov, Touma, & Khlystov, 2007; Westerdahl,
Fruin, Sax, Fine, & Sioutas, 2005; Xu et al., 2017) due to its advantages
of spatial coverage over the limited amount of the sparsely distributed
air quality monitoring stations. In this study, by conducting a series of
vehicular-based mobile monitoring campaigns, the ground-level PM2.5

concentrations were sampled in different parts of Hong Kong with
varied land use/landscape. After the mobile monitoring campaigns, the
mobile monitored spatial PM2.5 data were collated in GIS. Meanwhile,
the land use and landscape pattern of Hong Kong was quantified by

Fig. 1. The workflow chart of the present study.
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calculating a set of well-established landscape pattern metrics based on
the globally standardized Local Climate Zone (LCZ) scheme (Stewart &
Oke, 2012). Multivariate statistical correlation analysis was then per-
formed to correlate the spatial PM2.5 data with the landscape pattern
metrics. As the results, the correlation models were developed for the
spatial estimation of intraurban air pollution. The resultant models
were validated by the monitoring data from fixed air quality stations
operated by the local authority. On top of the models, the influence of
urban land use and landscape planning on the spatial patterns of PM2.5

was investigated by identifying the critical metrics of land use/land-
scape patterns. Fig. 1 demonstrates the workflow of the present study.

2. Methods

2.1. Quantifying the land use and landscape spatial pattern

2.1.1. The application of LCZ scheme and WUDAPT level 0 product
Most of the current studies focused on the influence of land use on

urban air quality only use the area and distance as the indicator/pre-
dictor to measure the land use and proximity to open space (Hoek et al.,
2008). The detailed spatial pattern (e.g. the configuration, allocation,
evenness, fragmentation, clustering, edge effects, etc.) of different land
use/landscape types have rarely been quantified in the investigation of
the spatial variation of intraurban air pollution. Previous land use/
landscape studies usually use the land use data provided by the local
governmental authorities of the study area, which makes the cross-ci-
ties comparison becomes difficult due to the varied land use classifi-
cation schemes. Currently, the USGS land-use and land-cover category
is an internationally idiomatic standard classification of land use
(Anderson, 1976). For example, the most popularly used model in the
field of atmospheric pollution modelling – Weather Research and
Forecasting model coupled with Chemistry (WRF-Chem) adopts the
USGS 24-category land-use data as the default built-in land use data
(Grell et al., 2005). In Hong Kong, the lack of land resources and high
degree of population aggregation jointly form a compact and vertical
mode of urban development. In the high-density urban built-up areas,
there are a considerable number of high-rise buildings/skyscrapers with
varied functions at different floors (Lau, Giridharan, & Ganesan, 2005).
In contrast to the high-density urban core, there are> 70% of the total
land area (approximately 1100 km2) are vegetated mountainous areas
and urban forests (Taylor, 1986). The mixing of highly diverse land use
shapes an extremely heterogeneous landscape of Hong Kong so such a
unique urban context cannot be well depicted by the USGS 24-category.
Based on the widely used land surface classification scheme – local
climate zone (LCZ) (Bechtel et al., 2015; Stewart & Oke, 2012), both
built-up areas and natural land cover can be classified into 17 distinct
types for the depiction of the land use diversity and variability of the
context of Hong Kong, especially for the densely built-up areas
(Table 1).

WUDAPT is a global initiative project volunteered by local urban
experts. It aims to establish a global urban database based on the LCZ
scheme (Mills, Ching, See, Bechtel, & Foley, 2015). The level 0 data
provides a 17-type land classification map at fine spatial scale and has
sufficient quality for environmental research application (Bechtel et al.,
2019). Now there are over 150 cities’ standardized LCZ data available
on the WUDPAT data platform and this initiative has attracted a
growing multi-disciplinary research community’s interest. In Hong
Kong, a WUDAPT level 0 database has been developed at a fine spatial
resolution of 100m in a series of previous studies based on satellite
images (Ren et al., 2016; Wang, Ren, Xu, Lau, & Shi, 2017). The results
of the accuracy assessment indicate that the resultant WUDAPT clas-
sification of Hong Kong is suitable for depicting of the diversity and
variability of the landscape of Hong Kong. Therefore, it was adopted by
the present study as the basis of land use and landscape analysis.

2.1.2. The calculation of landscape metrics
As highly quantifiable measures, the calculation of landscape me-

trics have been incorporated into the satellite image-based land use/
land cover analysis (Southworth, Nagendra, & Tucker, 2002). Most of
the landscape metrics are developed based on the classic “patch-cor-
ridor-matrix” theory in landscape ecology (Forman, 1995). In the pre-
sent study, six landscape metrics were selected based on literature
(Neel, McGarigal, & Cushman, 2004; Roy & Mark, 1996) to quantify the
detailed spatial pattern of different land use/landscape types by uti-
lizing knowledge of landscape ecology. They are separated into two
different groups because they belong to different landscape levels: the
class-level and the landscape-level. Briefly speaking, four class-level
metrics represent the quantity and the spatial pattern of one particular
type of land use/cover within the unit area. Two landscape-level me-
trics evaluate the combination, arrangement, and mixing of all different
types of land use/cover within the unit area. Four class-level landscape
metrics were selected to represents the spatial pattern of each type of
land use/landscape classes – percentage of landscape types (PLAND),
Largest Patch Index (LPI), Aggregation Index (AI), Connectance Index
(CONNECT). Two widely used landscape-level metric – contagion index
(CONTAG) and Shannon’s Evenness Index (SEI) was adopted to quan-
tify the diversity of the land use. In this study, Fragstats (version 4) – a
widely used program for spatial pattern analysis of categorical maps,
was used to calculate all landscape metrics (McGarigal, Cushman, &
Ene, 2012).

PLAND is the most basic class-level metric of landscape composi-
tion. It calculates the areal proportion of a certain type of landscape in
the focused area (refers to each moving window/round buffer in this
study, see Section 2.3) as a percentage value, which can be calculated as
follows:

= =
∑

∗=PLAND P
a

A
100i

j
n

ij1

(1)

where, Pi is the PLAND of landscape type (LCZ class, in this study) i. n is
the total number of patches of the specified landscape type in the study
area. aij is the area of landscape patch j of the landscape type i. LPI is
also a measure of the areal proportion of specific landscapes, which is
similar with PLAND. The only difference is that LPI is only calculating
the percentage of the largest single patch instead of accounting all
patches of the specified landscape type (Eq. (2)). Therefore, it is a
measure of the dominance of each landscape type in the study area.

Table 1
The land use categories of Hong Kong – a comparison between WUDAPT and
USGS 24-category land use classification.

WUDAPT Classification based on LCZ USGS 24-category Land Use Classification

LCZ Category Land Use/Landscape
Description

Land Use
Category

Land Use/Landscape
Description

LCZ 1 Compact High-rise 20 Urban (High-rise)
LCZ 4 Open High-rise
LCZ 2 Compact Mid-rise 1 Urban (Mid-rise)
LCZ 5 Open Mid-rise
LCZ 3 Compact Low-rise 23 Urban (Low-rise)
LCZ 6 Open Low-rise
LCZ 7 Lightweight Low-rise
LCZ 8 Large Low-rise
LCZ 9 Sparsely Built
LCZ 10 Heavy Industry
LCZ A Dense Trees 15 Mixed Forest
LCZ B Scattered Trees
LCZ C Bush, Scrub 8 Shrubland
LCZ D Low Plant 5 Cropland/Grassland

Mosaic
LCZ E Bare Rock or Paved 19 Barren or Sparsely

VegetatedLCZ F Bare Soil or Sand
LCZ G Water 16 Water Bodies
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AI has been developed to measure the spatial aggregation levels of a
specific landscape type in the study area (He, DeZonia, & Mladenoff,
2000). Some earlier developed landscape metrics are scale-dependent
which means that the calculation results will be to a certain extent
sensitive to the map resolution (Turner & Gardner, 2015). AI overcomes
the above limitation of those previous metrics, therefore, was selected
by this study to evaluate the aggregation level of patches of each
landscape type. AI is a percentage value of the frequency of the spatial
adjacencies between the patches of a specified landscape type. AI= 0,
when all patches of the specified landscape type are entirely dispersed.
The details of calculation have been demonstrated by He et al. (2000) in
their study. CONNECT quantitatively evaluates the functional con-
nectivity between patches of each built-up or landscape type (in this
study, the LCZ sites). It is an important concept in landscape ecology
(Tischendorf & Fahrig, 2000). All patches of the same type in the study
area is firstly paired. Based on a threshold of distance, each pair of
patches is defined to be either connected or unconnected in terms of
their landscape function. As an indicator of the functional connectivity,
CONNECT calculates the percentage of connected pairs (Eq. (3)):

=
∑

∗≠
−CONNECT
c

100j k
n

ijk

n n( 1)
2

i i
(3)

where ni is the total number of patches of the specified landscape type
in this study area (there are a total of −n n( 1)/2i i pairs). j and k are the
two patches of a pair. =c 1ijk if the two patches are connected, other-
wise, =c 0ijk . At the landscape-level, the evaluation of landscape con-
tagion in this study is based on an improved metric – CONTAG which is
developed by Li and Reynolds (1993) (the detailed algorithm has been
demonstrated by their study). CONTAG evaluates the landscape ag-
gregation in a certain study area by taking all landscape types into

consideration. It is a percentage value ranges from 0 (all landscape
types in the study area are maximally disaggregated) to 100 (all land-
scape types in the study area are maximally aggregated). SEI is another
widely-used landscape-level metric of measuring the diversity of land
use/landscape composition in a certain area, which ranges from 0 (no
diversity, one single type of landscape dominates the entire study area)
to 1 (high diversity without dominance effect, the proportion of all
types of landscape are perfectly the same in the study area). SEI was
calculated based on the following equation:

=
− ∑ ∗=SEI

P P
m

( ln )
ln

i
m

i i1
(4)

where, Pi is the PLAND of landscape type (LCZ class) i. m is the total
number of landscape types in the study area. All landscape metrics were
normalized to [0,1] and used as the predictors of PM2.5 concentration in
later analysis (Section 2.3.1).

2.2. PM2.5 mobile monitoring campaigns

2.2.1. Monitoring plan
Mobile monitoring method has been increasingly adopted to in-

vestigate the spatial variation of urban air quality (Adams &
Kanaroglou, 2016; Xu et al., 2017). In this present study, the spatial
variation of ground-level PM2.5 in Hong Kong were investigated by a
series of vehicular-based mobile monitoring. The mobile monitoring
method has been successfully adopted in a preliminary study of Hong
Kong to investigate the street-level particulate air pollution in the
downtown area of Hong Kong within a relatively small spatial extent
(Shi, Lau, & Ng, 2016). However, the design of monitoring route is
largely determined by the study objective. It should be noticed that
Hong Kong is a mountainous city with a highly heterogeneous land-
scape pattern and a compact urban scenario in its built-up area. To
serve the objective of the present study, the mobile monitoring route

Fig. 2. The location of Hong Kong, and the two
mobile monitoring routes used in the present study
in sampling the ground-level PM2.5 in different types
of the land use/landscapes of Hong Kong (based on
the LCZ classification scheme). PM2.5 data of corre-
sponding time period of mobile monitoring cam-
paign from the four labelled air quality stations will
be used as the external validation dataset. Modified
from: Shi et al. (2018).
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has to be entirely redesigned in order to cover a broad range of various
types of land use and landscapes. As the results, two monitoring routes
with a total length of about 90 km were designed by the present study
(Fig. 2). The first route has a length of 35 km and mainly passes through
more built-up areas with artificial land covers and landscapes. The
second route has a length of 55 km mainly covers the natural land-
scapes/land cover.

Mobile monitoring campaigns with repeated monitoring runs on the
same route at properly-selected time slots are required for reliable ob-
servations (Elen et al., 2013). On top of that, the spatiotemporal data
can be spatially aggregated for each monitored location on the route to
obtain a robust estimation on spatial pattern of the air quality
(Hatzopoulou et al., 2017). Three particular time slots of each day were
selected by this study for monitoring the PM2.5 spatial variation in a
diurnal cycle, which are 09:00 am to 11:00 am, 2:00 pm to 4:00 pm, and
7:00 pm to 9:00 pm. Considering the regional transportation of the
PM2.5 from the Pearl River Delta region (PRD) of Mainland China af-
fects Hong Kong only one-third of time in the year mainly during the
winter time (Lau, Lo, Gray, Yuan, & Loh, 2007; Yuan et al., 2006), all
monitoring campaigns were conducted between July and October to
avoid the dominance effect of regional air pollution. The mobile mon-
itoring campaigns were shared by the present study and another pre-
vious study on the spatial investigation of air temperature (Shi, Lau,
Ren, & Ng, 2018). Therefore, details information has been provided by
the above previous study.

2.2.2. Instrumentation and data calibration
A compact multi-purpose vehicle with a PM2.5 monitor and micro-

climate probes equipped was used for the mobile measurement cam-
paigns in the present study. The concentration level of PM2.5 was
monitored by a DustTrak DRX aerosol monitor (hereinafter the
DustTrak) with a temporal frequency of 1 Hz. The air temperature (Ta,
°C) and relative humidity (RH, %) were synchronously monitored by a
set of TESTO™ 480 Thermometers. A GPS locator and a video camera
were also installed to record the geographical position and the sur-
rounding conditions. Before being installed on the measurement ve-
hicle, the DustTrak monitor was collocated with a roadside air quality
monitoring station (Mong Kok Station) of the Hong Kong
Environmental Protection Department (HKEPD) (HKEPD, 2013) for
calibration. The annual average RH of Hong Kong is approximate 80%
which is a relatively high level. All main chemical components of the
aerosol are measured by the DustTrak (a light scattering instrument),
which account for about 70% or more of PM2.5 mass. Consequently, the
reading will increase with high relative humidity due to the increase in
the average particle size associated with condensational growth of hy-
groscopic components of the aerosol (Swietlicki, 2004; Zhang, 1996).
Therefore, the DustTrak readings were firstly corrected to remove the
influence of the particle-bound water using the synchronously mon-
itored RH (Eq. (5)) based on Ramachandran, Adgate, Pratt, and Sexton
(2003):

= ⎡
⎣⎢

+
−

⎤
⎦⎥

PM PM RH
RH

/ 1 0.25
(1 )DRXRH DRX2.5 2.5

2

(5)

where the PM DRX2.5 is the uncorrected DustTrak readings. The
PM DRXRH2.5 is the corrected readings in which the remove the influence
of the particle-bound water has been removed. The collocation com-
parison method with a linear relationship-based calibration is com-
monly used for the calibration of DustTrak DRX and has been used in
previous studies in Hong Kong (Che, Frey, & Lau, 2016; Li, Che, Frey, &
Lau, 2018; Li, Che, Frey, Lau, & Lin, 2017). Similarly, in the present
study, the DustTrak used for mobile monitoring was collocated with the
aforementioned monitoring station for a 12-hour collocation campaign.
A linear regression was then performed to derive the relationship be-
tween hourly averaged readings from the DustTrak and the hourly
monitoring data of the reference station. The resultant =r 0.8982

indicates a good relationship. Therefore, the slope of the linear re-
gression (which is 1.69) was used as the calibration factor (CFPM DRX2.5 )
or the photometric calibration of the DustTrak monitor (Eq. (6)).

=PM PM
CFDRXRHCF

DRXRH

PM DRX
2.5

2.5

2.5 (6)

where the PM DRXRH2.5 is the hourly averaged readings from the DustTrak
after humidity correction. PM DRXRHCF2.5 is the resultant value after both
the humidity correction and photometric calibration. The above hu-
midity correction and photometric calibration were performed for all
PM2.5 data from the mobile monitoring campaigns before further data
processing.

2.2.3. Data processing
The complex roadside environment of Hong Kong is usually being

influenced by intense traffic flows and other roadside anthropogenic
activities. Some abnormal data samples (show as the spikes and outliers
in the dataset) that influenced by anomalous pollution sources have
been observed in our measurement data. The sampled PM2.5 values
could be much higher than the typical ambient concentration level,
when driving closely behind heavy-duty diesel vehicles or driving near
building construction sites/roadside food restaurants. In this study, a 4-
order polynomial Savitzky–Golay (S-G) filter was used to deal with the
abnormal data spikes. S-G filter is a moving average filter developed for
eliminating the data noise without significant distortion of the data
(Orfanidis, 1995). A data span of 11 (the mean of the sampling point
numbers in per HK LCZ map cell) was used as the data span for per-
forming the data filter.

Temporal effects in background PM2.5 concentration level need to
be removed from the spatial dataset. Temporal adjustments were made
for each mobile monitoring dataset to eliminate the impacts of hour-to-
hour difference. Hourly PM2.5 monitoring data from the nearest HKEPD
general air quality monitoring station were used as the reference for the
temporal adjustment of each mobile monitoring data point based on a
linear assumption of temporal changes in background PM2.5 con-
centration level. The reference air quality monitoring stations in the
study area were shown in Fig. 2. The spatial estimation of air quality
trend is also sensitive to the data processing strategies (Brantley et al.,
2014). An appropriate spatial scale is also essential to the spatial in-
vestigation of air quality (Lightowlers, Nelson, Setton, & Keller, 2008).
In this study, the spatial scale of data aggregation is determined to be in
conformity with the spatial resolution of the Hong Kong LCZ map. The
cell size of Hong Kong LCZ map as WUDAPT level 0 product is
100m×100m. Therefore, a distance of 100m was used as the spatial
interval to create a groups of equally spaced aggregation points along
the two mobile monitoring routes (a total of 826 aggregation points was
generated). All measured PM2.5 data were then aggregated to these
aggregation points by mean and used as the response variables in the
statistical modelling later.

2.3. Correlating the land use/landscape pattern with PM2.5 observations

2.3.1. Predictor variables and response variable
The spatial gradient of all landscape metrics mentioned above was

analyzed over entire Hong Kong by using a moving windows method. A
round-shaped buffer was used as the shape of the moving window. It
was created for each cell of the LCZ classification map (mentioned in
Section 2.1) so that the six metrics can be calculated for each land use
type at each location of Hong Kong. A series of buffer radius (RBuffer)
were adopted to investigate the landscape pattern at different spatial
scales – 100, 200, 300, 400, 500, 750, 1000, 1500, 2000m. The RBuffer
ranges from a small spatial scale of a small street block (100m) to a
large spatial size that similar to a common Tertiary Planning Unit (TPU)
of Hong Kong (2000m). The calculated values of all above metrics at all
PM2.5 data aggregation points (results from Section 2.2) were extracted
and used as the predictor datasets. The longitude (X-coordinates),
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latitude (Y-coordinates), and altitude (Z) of each point (based on
HK1980 Transverse Mercator project coordinate system) were also used
as the candidate predictor variables of the correlation model. The
corresponding aggregated PM2.5 data were used as the response vari-
ables.

2.3.2. Developing the correlation model
As introduced in Section 2.1.2, the four class-level metrics among

the six metrics are designed to represent the spatial pattern of each land
use/landscape type, which means that these metrics need to be calcu-
lated for each land use/landscape type listed in Table 1 (17 times in
total). The same metric calculated using two different RBuffer are used as
two separate predictor variables in the development of correlation
model. For example, the PLAND of the type LCZ 1 calculated using
100m and 200m buffers will be regarded as two different metrics in
this study, such that there are 70 metrics need to be calculated using
nine different buffers. With the geo-coordinates (X, Y, and Z), as the
results, a total of 633 predictor variables need to be examined during
the modelling process which possibly leads to multicollinearity issues
due to this large number of predictors (Franke, 2010). The multi-
collinearity in predictor variable data causes unreliable regression
modelling results in environmental and ecological research, which
should be minimized (Abdul-Wahab, Bakheit, & Al-Alawi, 2005;
Graham, 2003). To serve as a reference for urban land use planning and
landscape management, our regression modelling process aims to in-
clude those most significant predictors that would explain as much as of
the influence of land use and landscape in the spatial variation of the
response variables – PM2.5 concentration. Therefore, the following
stages of works were performed to screen all candidate variables and
retain only a subset of significant variables. Only a limited number of
variables will be finally included in the resultant model.

Stage 1 – Identifying the most influential moving window size/
buffer for each metric. The impact range of different land use/landscape
types may vary due to the differences in the emission, deposition rate as
well as the complex physical or chemical basis of the particulate air
pollutant diffusion and dispersion. Geographically, land use/landscape
pattern quantified by a specific metrics within its most influential
buffers explains the variation of PM2.5 concentration to the greatest
extent. Above is the reason behind performing the moving windows
analysis based on a series of different RBuffer . For example, the heavy
industrial land use (LCZ 10 in Table 1) could affect the PM2.5 con-
centration level within a geographical extent of several kilometers,
while an isolated small piece of vegetated area (e.g. a small urban park
in LCZ B) could only improve the ambient air quality within a couple of
hundred meters. Therefore, the most influential size of moving win-
dows – RBuffer will not be identical for those variables included in the
resultant model. The correlation coefficient (r) between the response
variable – PM2.5 concentration and each metric calculated within the
nine RBuffer were calculated based on simple linear regression. Only the
RBuffer -based metric which has the highest |r| (considering that r could
be either positive or negative, absolute value was used for the corre-
lation comparison) were selected as the predictor variables and in-
cluded in the next stage of the correlation analysis.

Stage 2 – Constructing multiple linear regression (MLR) model. The
statistical correlation analysis starts from a classic multiple linear re-
gression analysis (Eq. (7)):

= + + … + + +PM α Var α Var α Var γ εi n n2.5 1 1 2 2 (7)

where PM i2.5 is the averaged PM2.5 concentration value at the ag-
gregation point i. The model includes n land use/landscape metrics as
the predictor variables. α1…, αn are the coefficient estimates of the
metrics Vαr1, Vαrn at the aggregation point i. γ is the model intercept,
and ε is the residual. For example, Vαr1 could be PLANDLCZ m1,200 which
represent the areal proportion of LCZ 1 calculated within a round-
shaped buffer with a radius of 200m. As the basis of any further cor-
relation analysis, MLR model was firstly constructed based on the

variable subset from Stage 1. There will be still dozens of candidate
variables were still involved as the potential predictors. Therefore,
LASSO (Least Absolute Shrinkage and Selection Operator) is performed
to identify a subset of influential predictors which possibly contains the
best predictor variables. LASSO is a variable selection method which
can be used to automatically screen a subgroup of significant predictor
variables of the response variable from a large set of candidate pre-
dictors (Tibshirani, 1996), which is particularly useful to the relatively
large predictor dataset of the present study where collinearity is po-
tentially a problem. Restrictive VIF rules have been used to ensure that
there is no collinearity among final included independent variables in
resultant models. For example, the studies by Vienneau et al. (2013)
and Shi et al. (2016), etc. The subset of predictor variables was further
refined by adopting the following rules: Only variables with a p-
value< 0.001 and VIF< 3 in the MLR model will be included. All
other variables selected by LASSO will still be excluded.

Stage 3 – Incorporating spatial non-stationarity into correlation
analysis. A small number of most influential predictor variables has
been selected and used to construct an MLR model at stage 2. However,
the MLR model are still constructed based on a fixed effect model
structure, in which the effects of predictor variables are presumed to be
spatially stationary. However, the influence of some predictors could be
spatially variant due to the landscape heterogeneity of Hong Kong. The
MLR model developed by performing a stepwise statistical procedure
for selecting important independent variables must be further cali-
brated to deal with the spatial non-stationarity (Leung, Mei, & Zhang,
2000). Therefore, in this study, using the subset of most influential
predictor variables that previously identified, geographically weighted
regression (GWR) modelling is performed to incorporate the spatial
non-stationarity into the correlation model. GWR is a widely-adopted
method of dealing with such spatial non-stationarity in PM2.5 spatial
estimation (van Donkelaar, Martin, Spurr, & Burnett, 2015). GWR deals
with the spatial non-stationarity by constructing local correlations for
different spatial locations instead of using one global correlation for the
entire spatial domain (Brunsdon, Fotheringham, & Charlton, 1998). The
coefficient estimates of GWR model variables are spatially variant as
well (Eq. (8)):

∑= + +PM α u v VAR γ ε( , )i
n

n i i n d i i2.5 ,
(8)

where PM i2.5 is the averaged PM2.5 concentration value at the ag-
gregation point i. u v,i i are the geo-coordinates of the aggregation point
i. αn are the coefficient estimates of the n land use/landscape metrics
(VARn d, ) calculated within the RBuffer of d. γi and εi are the intercept and
residuals of GWR model.

2.3.3. Model validation
Both internal validation and external validation were conducted to

examine the performance of the resultant models. For the internal va-
lidation, leave-one-out cross-validation (LOOCV) was adopted. Cross-
validation adjusted r2 (LOOCV r2) and root-mean-square error (RMSE)
were calculated. About the external validation, the resultant MLR and
GWR model performance were further examined by the monitoring
data from four fixed air quality stations operated by the local authority
– HKEPD (Fig. 2). The 2016 annual averaged PM2.5 data from four air
quality stations outside the monitoring route were compared with the
estimated PM2.5 concentration value based on resultant models.

2.4. Incorporating the Emission-related predictors into models

In the previous section, land use and landscape metrics were used as
predictors to estimate spatial PM2.5. In this section, based on the same
methodology, more predictors directly related to the PM2.5 emissions
will be examined to further improve the estimation accuracy. Same
statistical methods (LASSO, MLR, GWR) and model criteria (p-
value< 0.001 and VIF<3) were adopted to ensure the robustness of
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resultant model. Road traffic is a major emission source of PM2.5 in
Hong Kong. Therefore, the annual average daily traffic (AADT ) values
which counted by the local authority to represents the traffic volume
and road line density are used as the indicators of traffic-related PM2.5

emission. The spatial data of AADT and road line density were analyzed
by using the same moving windows method described in Section 2.3.1.
The road line density was calculated separately for major roads
(RDMajor) and minor roads (RDMinor). Additionally, the count of bus stops
(BUSST ) is also calculated using the buffers, since bus as a heavy-duty
vehicle is a considerable PM2.5 source. The emission from marine
transportation is another major PM2.5 source in Hong Kong (Lau et al.,
2007). To take this into consideration, the proximity (spatial distance)
to marine routes and facilities of each PM2.5 aggregation points was
calculated and used as a predictor variable. In the 1980s, the labor-
intensive and high-pollution emission industries of Hong Kong have
been relocated to Mainland China. Therefore, the present study does
not include any industry pollution-related predictors. As the results, 38
more emission-related predictors were examined for improving the
GWR model.

3. Results

The most influential buffers for each metric were identified by only
keeping the RBuffer-based metric corresponding to the buffer size which
has the highest |r|. Additionally, those variables with a weak and/or
statistically insignificant correlation with PM2.5 (|r| < 0.1, p-value>
0.05) were also excluded and not used as the input for LASSO regres-
sion modelling. As the results, only 42 variables (include X, Y, and Z)
remained to be used for regression modelling (Table 2).

Table 3 and Fig. 3 shows the resultant MLR model from stage 2
(mentioned in Section 2.3.2). Seven predictor variables are included by
the MLR model and already explain almost 47% variation in the mea-
sured PM2.5. The results indicate the significance of land use and
landscape pattern in explaining the spatial variation of PM2.5. After
incorporating spatial non-stationarity into correlation analysis, the
model performance was further improved. The adjusted r2 of GWR
model is 0.622 (Table 4 and Fig. 4). The external validation results
show that the adjusted r2 between the modelled PM2.5 data and the
2016 annual averaged PM2.5 data from the air quality stations are 0.699
and 0.871 for the MLR model and GWR model (without emission-re-
lated predictors included) respectively. Fig. 5 shows the PM2.5 predic-
tion maps derived from both the MLR and the GWR model.

As described in Section 2.4, using the above MLR model as the basis,
38 more predictors that directly related to the PM2.5 emissions were
examined (AADT , road line density, BUSST and the distance to the
marine routes and facilities). The same method (mentioned in Section
2.3.2) was used to identify the most influential emission related pre-
dictors. As the results, two influential emission related predictors were
identified – AADT m100 and RDMajor m,750 . After incorporating these two
predictors into the MLR model, the model adjusted r2 increased from
0.469 to 0.515. Moreover, the predictor LPILCZ m4,1500 becomes statisti-
cally insignificant due to the collinearity and therefore being excluded.
However, adding these two traffic emission-related predictors doesn’t
substantially changes the GWR model performance (adjusted

=r 0.5992 , AICc= 4852.911). This indicates that the LCZ scheme and
WUDAPT level 0 product could indirectly represent the road network
organization.

Table 2
Summary of the most influential RBuffer of selected land use/landscape predictor variables for MLR and GWR modelling (unit: m). CONTAG and SEI are landscape-
level metrics which are not calculated for each land use/landscape type. Brackets indicate a negative correlation with PM2.5 concentration; n.s. – Not significant
statistically (p-value > 0.05); n.a. – Not available; Bold font indicates the final subset of variables that meet the criteria of p-value<0.001 and VIF< 3 in MLR
model.

Land use/Landscape Type Land Use/Landscape Description PLAND LPI AI CONNECT CONTAG SEI

LCZ 1 Compact High-rise 1000 1500 750 n.s. n.a. n.a.
LCZ 2 Compact Mid-rise 400 400 400 n.s. n.a. n.a.
LCZ 3 Compact Low-rise n.s. n.s. n.s. n.s. n.a. n.a.
LCZ 4 Open High-rise 2000 1500 2000 n.s. n.a. n.a.
LCZ 5 Open Mid-rise 500 500 500 n.s. n.a. n.a.
LCZ 6 Open Low-rise (300) (300) (300) n.s. n.a. n.a.
LCZ 7 Lightweight Low-rise n.s. n.s. n.s. n.s. n.a. n.a.
LCZ 8 Large Low-rise n.s. n.s. n.s. n.s. n.a. n.a.
LCZ 9 Sparsely Built (1500) (1500) (2000) n.s. n.a. n.a.
LCZ 10 Heavy Industry n.s. n.s. 750 n.s. n.a. n.a.
LCZ A Dense Trees (500) (500) (500) n.s. n.a. n.a.
LCZ B Scattered Trees (1500) (1500) (1500) n.s. n.a. n.a.
LCZ C Bush, Scrub (2000) (2000) (2000) n.s. n.a. n.a.
LCZ D Low Plant (750) (750) (750) n.s. n.a. n.a.
LCZ E Bare Rock or Paved 2000 2000 2000 n.s. n.a. n.a.
LCZ F Bare Soil or Sand (400) (400) (400) n.s. n.a. n.a.
LCZ G Water n.s. n.s. n.s. n.s. n.a. n.a.
All Types n.a. n.a. n.a. n.a. n.s. 400 (400)

Table 3
The performance and structure of the resultant MLR model of PM2.5 con-
centration. All variables that meet the criteria of p-value< 0.001 and VIF<3
in MLR model. Variable name: for example, “LPI_LCZ 1_1500” refers to the
Largest Patch Index of land use type-LCZ1 calculated within the buffer of
1500m.

The resultant MLR model of PM2.5 concentration using land use/landscape metrics as
predictors
r2 474

adjusted r2 469

LOOCV r2 464
RMSE 5.093
n 826
AICc 5043.611

Predictor
Variables

Coefficient
Estimates

95% CI
Lower

95% CI
Upper

Std Error t Ratio VIF

Model
Intercept

33.445 30.915 35.975 1.289 25.950 .

LPILCZ m1,1500 0.014 25.333 32.696 1.875 15.470 2.170
LPILCZ m4,1500 794 2.690 10.899 2.091 3.250 1.396
LPILCZA m,500 0.330 −6.479 −2.180 1.095 −3.950 2.235
LPILCZB m,1500 4.052 −60.309 −27.795 8.282 −5.320 1.863
AILCZ m2,400 094 5.182 11.006 1.484 5.460 1.027
AILCZB m,1500 053 2.906 7.199 1.094 4.620 2.383
SEI m400 5.610 −7.953 −3.268 1.193 −4.700 1.617
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4. Discussion

4.1. Influential moving window sizes/buffers

As mentioned in Section 2.3.2, the most influential moving window
size/buffer for each metric has been identified by calculating and
keeping the RBuffer-based metric corresponding to the buffer size which
has the highest |r|. The sensitivity of the correlation between landscape
metrics and the response variable to the changes of buffer size was il-
lustrated in Fig. 6.

Findings from the process of identification of influential buffers
indicate:

(1) All variables of CONNECT were excluded due to their correlation
with PM2.5 are weak (all |r| < 0.1) and statistically insignificant
(p-value>0.05). Therefore, CONNECT was excluded by the sta-
tistical modelling. CONNECT value for each land use/landscape
types at most of the aggregation points are 0, which is the cause of
the weak and insignificant correlation. This fact affirms the highly
heterogeneous and fragmented city landscape pattern of Hong
Kong.

(2) For each type of land use/landscape, the influential buffers of
PLAND, LPI, and AI are similar, which confirms the differences in
the impact range of land use types. Except those excluded variables,
the types in urban built-up areas (LCZ 1 to LCZ 6) generally have a

smaller influential buffer size than those types in suburban and
rural areas (LCZ A to LCZ G). The correlation between LCZ7/LCZ8
and PM2.5 are also weak (|r| < 0.1) and statistically insignificant
(p-value> 0.05) because their areal proportion is quite small in
Hong Kong. Similarly, LCZ 9 also has large influential buffer which
is possibly because that they are sparsely distributed in different
part of Hong Kong and usually has a small area, therefore, may not
be included by those smaller buffers (> 1000m).

(3) LCZ 1 and LCZ 4 have larger influential buffers than other built-up
areas, which implies that the higher-rise built environment has a
larger impact range. From the viewpoint of urban fluid dynamics,
higher-rise buildings usually have larger influential range on the
near-surface wind field as such hamper the pollution dispersion in a
larger area.

(4) LCZ A represents the densely vegetated trees. The significance of
variable LPILCZA m,500 indicates that it is important to have enough
amount of high-quality urban greening within a buffer of 500m. In
other words, a large patch of dense trees, for example, a centralized
park would be beneficial to the mitigation of air pollution of
neighborhoods. The accessibility to urban greenery at the neigh-
borhood scale should be given a high priority in urban planning and
design practice. The inclusion of variable – LPILCZB m,1500 indicates
that it could also be very useful to sparsely arrange trees at the
urban district level. This finding is particularly useful for highly
urbanized cities that have only limited land resources can be used

Fig. 3. The residual of the resultant MLR model of PM2.5 concentration.

Table 4
The performance and statistical summary of coefficient estimates of the resultant PM2.5 concentration GWR model without emission-related variables.

The resultant GWR model of PM2.5 concentration by incorporating spatial non-stationarity
r2. 622

adjusted r2. 622

LOOCV r2. 620
RMSE 3.282
n 826
AICc 4815.135

Predictor Variables Mean Std. Dev. Min 10% Quantiles 25% Quantiles Median 75% Quantiles 90% Quantiles Max

Model Intercept 32.036 2.461 27.532 28.527 29.894 32.364 33.906 35.283 36.495
LPILCZ m1,1500 0.007 23.376 10.550 28.464 31.123 33.277 36.068 85.479 119.712
LPILCZ m4,1500 052 15.029 −15.717 −11.428 −7.882 0.986 22.333 26.174 28.570
LPILCZA m,500 0.820 4.454 −6.796 −5.770 −3.481 −2.397 2.837 6.273 10.299
LPILCZB m,1500 9.625 53.490 −90.074 −75.347 −61.330 −38.883 3.012 78.601 119.892
AILCZ m2,400 635 1.316 5.584 5.739 6.260 7.891 8.636 9.412 10.269
AILCZB m,1500 564 3.703 −3.438 −2.083 0.243 4.200 6.438 8.132 9.934
SEI m400 0.694 4.058 −11.542 −10.859 −7.496 −4.772 −1.751 1.302 3.114
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for greening in their intraurban areas.
(5) CONTAG quantifies the contagion of a certain type of land use (e.g.

LCZ 1), while SEI evaluates landscape diversity. CONTAG are po-
sitively correlated with PM2.5 concentration, while the correlation
of SEI is negative. Notably, these two landscape-level metrics share

the same influential buffer which is 400m. Above findings indicate
that higher diversity of the neighboring area help with the im-
provement of air quality. The contagion of those compact land use
types in urban built-up areas (LCZ 1, LCZ 2, and LCZ 4), could
largely decrease the dynamic potential of pollution dispersion.

Fig. 4. The spatial non-stationarity in coefficient estimates of predictor variables and model intercept of PM2.5 concentration GWR model without emission-related
variables.

Fig. 5. The PM2.5 prediction maps derived from the MLR, and the GWR models.
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4.2. Resultant models and the revelation for urban planning practice

As described in Section 3, two resultant models were developed –
MLR and GWR model. The development of the MLR model allows the
recognition of the most influential metrics and the identification of
their influencing spatial buffers. Seven predictor variables are included
by the MLR model and already explain almost one half of the variation
in the measured PM2.5. In the resultant models, both LPILCZ m1,1500 and
LPILCZ m4,1500 is positively related to the PM2.5 concentration level in-
dicates that a large area of high-rise building development could
hamper the near-ground pollutant emissions, therefore, should be
avoided in urban planning process. AILCZ m2,400 also has a positive re-
lationship with PM2.5 concentration level. Although LCZ 2 has a lower
level of building height than LCZ 1 and LCZ 4, the higher ground
coverage ratio still negatively affects the pollution dispersion. Similar
findings could also be observed between LCZ 1 and LCZ 4. The coeffi-
cient estimates of LCZ 1 is much larger than LCZ 4, which indicates LCZ
1 has a more significant influence on the near-ground air quality due to
its higher ground coverage ratio. The aggregation of high-rise and /or
high ground coverage ratio building development is not recommended.
This recommendation can be also supported by the negative correlation
between SEI m400 and PM2.5 concentration. The inclusion of LPILCZA m,500 ,
LPILCZB m,1500 , AILCZB m,1500 affirms that urban greening is an effective way
of mitigating urban air pollution.

The development of the GWR model allows further incorporation of
the spatial non-stationarity. As shown in the resultant GWR model, by
incorporating spatial non-stationarity into the spatial analysis, only five
land use/landscape classes can already explain> 60% of the spatial
variation in PM2.5, without using any traffic-related variables or data
from emission inventory. Above indicates the considerable influence of
urban land use/landscape pattern on the spatial air quality as well as
the usefulness of WUDAPT in explaining the spatial variation of urban
air quality.

4.3. Limitations

Although the aforementioned findings are informative and useful,
there are still several limitations currently did not overcome by the
present study. These limitations need to be considered very carefully
and should be further investigated by follow-up studies. First, the re-
latively high cross-validation adjusted r2 value might be because of the
limited number of locations for validation and the stations are relatively
close to the measurement routes. Therefore, additional measurements
should be conducted to acquire more external validation data that
further away from the current mobile monitoring routes). Moreover,

the current study is a test case only based on the one case city. The
transferability and applicability of the current LCZ-based research
methodology for other cities and regions need to be further in-
vestigated. To be more specific, for example, the present study does not
include any industry pollution-related predictors, which means that the
effect of industry type of land use was not investigated. This is rea-
sonable for Hong Kong because the high-pollution emission industries
have been relocated outside Hong Kong. This limitation could introduce
uncertainties because the effect of industry type of land use is influ-
ential to the air quality of other study areas, especially for those in-
dustrial-oriented cities. Another limitation is that although external
validation has been conducted using another dataset, the dataset is still
measured in the same city. Therefore, future work should focus on the
external validation and the feasibility test of the current methods for
other cities and areas. Considering the collinearity between LCZ related
land use/landscape metrics and traffic-related predictors has been
found, future work should also focus on investigating the representative
of LCZ and WUDAPT level 0 product on the spatial emissions. Last but
not least, the possible nonlinear relationship for landscape metrics has
not been explored yet as there are a very large number of predictors.
The interaction and polynomial terms in the correlation between
landscape metrics and PM2.5 should be explored by follow-up studies.

5. Conclusions

The present study is one of the first applications of LCZ scheme and
WUDAPT level 0 product in the spatial estimation of intraurban air
quality. The spatial PM2.5 concentration in the compact urban scenario
of Hong Kong was sampled by conducting a series of mobile monitoring
campaigns. The WUDAPT level 0 database was adopted as the basis of
the calculation of land use/landscape metrics which were used as the
predictor variables to explain the spatial variations in PM2.5 con-
centration. By utilizing the WUDAPT and combing the knowledge of
urban landscape planning, this study investigates the influence of urban
land use/landscape patterns on PM2.5 concentration and develops
spatial models that could explain the PM2.5 spatial variation. By pro-
viding straightforward quantitative correlation between land use/
landscape pattern and PM2.5 concentration level, the study outputs
could inform the urban planning strategies for mitigating air pollution.
The resultant GWR model shows that only five land use/landscape
classes can already explain 62% of the spatial variation in PM2.5,
without using any traffic-related variables or data from emission in-
ventory, which shows the usefulness of LCZ scheme in estimating the
spatial variation in urban air quality. This could also be particularly
useful to the urban air quality assessment in those cities and areas

Fig. 6. The plot of the |r| between landscape metric included by the model and PM2.5, calculated using various buffer sizes.
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where the long-term monitoring data, fine-grained traffic data, and
detailed emission inventory are not available. More importantly, for the
application of the globally standardized WUDAPT level 0 database, this
study method can provide opportunities for standardizing PM2.5 spatial
mapping method and contributing to the global estimation of PM2.5.
This would greatly help researchers and scientists to quickly estimate
the spatial pattern of urban air pollution by using free satellite images
and other open resources, such as WUDAPT products.
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